Approximate solution of a model describing biological species living together by Taylor collocation method

نویسندگان

  • Elçin Gökmen
  • Mehmet Sezer
چکیده

In this paper, a numerical method is presented to obtain approximate solutions for the system of nonlinear delay integrodifferential equations derived from considering biological species living together. This method is essentially based on the truncated Taylor series and its matrix representations with collocation points. Also, to illustrate the pertinent features of the method examples are presented and results are compared to the Adomian decomposition method, the variational iteration method, pseudospectral Legendre method. All numerical computations have been performed on the computer algebraic system Maple 15.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The differential transform method for solving the model describing biological species living together

F. Shakeri and M. Dehghan in [13] presented the variational iteration method for solving the model describing biological species living together. Here we suggest the differential transform (DT) method for finding the numerical solution of this problem. To this end, we give some preliminary results of the DT and by proving some theorems, we show that the DT method can be easily applied to mentio...

متن کامل

Numerical Solution of a Model Describing Biological Species Living Together by Using Legendre Multiwavelet Method

Abstract: In this article a numerical method is proposed to approximate the solution of the system of integrodifferential equations describing biological species living together. The method is based upon Legendre multiwavelet approximations. The properties of Legendre multiwavelet are first presented. These properties together with Ritz-Galerkin method are then utilized to reduce the equations ...

متن کامل

An approach based on statistical spline model for Volterra-Fredholm integral equations

‎In this paper‎, ‎an approach based on statistical spline model (SSM) and collocation method is proposed to solve Volterra-Fredholm integral equations‎. ‎The set of collocation nodes is chosen so that the points yield minimal error in the nodal polynomials‎. ‎Under some standard assumptions‎, ‎we establish the convergence property of this approach‎. ‎Numerical results on some problems are given...

متن کامل

Approximate solution of system of nonlinear Volterra integro-differential equations by using Bernstein collocation method

This paper presents a numerical matrix method based on Bernstein polynomials (BPs) for approximate the solution of a system of m-th order nonlinear Volterra integro-differential equations under initial conditions. The approach is based on operational matrices of BPs. Using the collocation points,this approach reduces the systems of Volterra integro-differential equations associated with the giv...

متن کامل

An Approximate Method for System of Nonlinear Volterra Integro-Differential Equations with Variable Coefficients

In this paper, we apply the differential transform (DT) method for finding approximate solution of the system of linear and nonlinear Volterra integro-differential equations with variable coefficients, especially of higher order. We also obtain an error bound for the approximate solution. Since, in this method the coefficients of Taylor series expansion of solution is obtained by a recurrence r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015